X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Một tam giác có chu vi bằng 36 cm cạnh của nó tỉ lệ với 3; 4; 5. Tính độ dài ba cạnh.


Câu hỏi:

Một tam giác có chu vi bằng 36 cm cạnh của nó tỉ lệ với 3; 4; 5. Tính độ dài ba cạnh.

Trả lời:

Lời giải

Gọi độ dài 3 cạnh của tam giác là a, b, c (a, b, c > 0)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{3} = \frac{b}{4} = \frac{c}{5} = \frac{{a + b + c}}{{3 + 4 + 5}} = \frac{{36}}{{12}} = 3\)

Suy ra \(\frac{a}{3} = 3 \Leftrightarrow a = 9\);

           \(\frac{b}{4} = 3 \Leftrightarrow b = 12\);

           \(\frac{c}{5} = 3 \Leftrightarrow c = 15\)

Vậy độ dài 3 cạnh của tam giác đó là 9 cm, 12 cm, 15 cm.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem lời giải »


Câu 2:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem lời giải »