Cho hình vuông ABCD có cạnh bằng 2. Tính T = | vecto AB + vecto AC + vecto AD|
Câu hỏi:
Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).
Trả lời:
Lời giải
Ta có:\(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right|\)
\(T = \left| {\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) + \overrightarrow {AC} } \right|\)
\(T = \left| {\overrightarrow {AC} + \overrightarrow {AC} } \right|\)
\(T = \left| {2\overrightarrow {AC} } \right|\)
\(T = 2AC\)
\(T = 2.2\sqrt 2 \)
\(T = 4\sqrt 2 \)
Vậy \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right| = 4\sqrt 2 .\)
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.
Xem lời giải »
Câu 2:
Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).
Xem lời giải »
Câu 3:
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Xem lời giải »
Câu 4:
Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm AB, K là điểm đối xứng với H qua điểm I.
a) Tứ giác ACHI là hình gì ? Vì sao?
b) Tứ giác AHBK là hình gì ? Vì sao?
c) Nếu tam giác ABC đều thì ACHI là hình gì?
d) Tam giác ABC có điều kiện gì thì AHBK là hình vuông.
Xem lời giải »
Câu 5:
Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M ∈ BC), trên cạnh AC lấy điểm N sao cho AB = AN.
a) Chứng minh ∆ABM = ∆ANM.
b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).
Xem lời giải »
Câu 6:
Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.
Xem lời giải »