Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là A. 5/126; B. 121/126; C. 1/126; D. 6/125
Câu hỏi:
Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là
A. \(\frac{5}{{126}}\);
B. \(\frac{{121}}{{126}}\);
C. \(\frac{1}{{126}}\);
D. \(\frac{6}{{125}}\).
Trả lời:
Lời giải
Đáp án đúng là: A
Một tổ có 9 học sinh được xếp thành hàng dọc.
Suy ra số phần tử của không gian mẫu là: n(Ω) = 9!
Gọi biến cố A: “5 học sinh nam đứng kề nhau”.
• Xếp 5 học sinh nam đứng kề nhau thì sẽ có 5! cách xếp.
• Sau đó ta coi 5 học sinh nam là 1 “người A”, rồi xếp “người A” cùng với 4 bạn nữ kia, tức là xếp 5 người, ta lại có 5! cách xếp.
Vì vậy n(A) = 5!.5!
Vậy xác suất của biến cố A là: \({\rm P}\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{5!.5!}}{{9!}} = \frac{5}{{126}}\)
Vậy đáp án đúng là A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm x, biết: \({x^2} + 5x + 4 - 5\sqrt {{x^2} + 5x + 28} = 0\).
Xem lời giải »
Câu 2:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Xem lời giải »
Câu 3:
Viết các số (0,25)8 và (0,125)4 dưới dạng các lũy thừa với cơ số 0,5.
Xem lời giải »
Câu 4:
Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.
Xem lời giải »
Câu 5:
Một cỗ bài có 52 quân, mỗi chất cơ, rô, nhép, bích đều có 13 quân. Có bao nhiêu cách lấy ra 5 quân sao cho có đủ cả 4 chất: cơ, rô, nhép, bích?
Xem lời giải »
Câu 6:
Tháng 2 năm nào đó có 5 ngày thứ Năm. Hỏi ngày 1 tháng đó là thứ mấy? Chủ nhật tháng đó vào những ngày nào?
Xem lời giải »
Câu 7:
Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.
Xem lời giải »
Câu 8:
Tìm giá trị lớn nhất của Q = \(\frac{1}{{x - 2\sqrt x + 3}}\).
Xem lời giải »