Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 đi
Câu hỏi:
Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n, biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.
A. 6;
B. 8;
C. 7;
D. 5.
Trả lời:
Lời giải
Đáp án đúng là: C
Mỗi tam giác được lập thành do một cách chọn 3 điểm sao cho 3 điểm đó không thẳng hàng tức là không cùng nằm trên một cạnh của tam giác ABC.
Chọn ngẫu nhiên 3 điểm từ n+6 điểm đã cho có: \(C_{n + 6}^3\) (cách)
Chọn 3 điểm chỉ nằm trên đúng 1 cạnh của tam giác ABC có: \(C_4^3 + C_n^3\) (cách)
Số tam giác lập thành là:
\(C_{n + 6}^3 - \left( {C_4^3 + C_n^3} \right) = 247\)
\( \Leftrightarrow \frac{{\left( {n + 6} \right)!}}{{3!.\left( {n + 3} \right)!}} - \left[ {4 + \frac{{n!}}{{3!.\left( {n - 3} \right)!}}} \right] = 247\)
\( \Leftrightarrow \frac{{\left( {n + 6} \right)\left( {n + 5} \right)\left( {n + 4} \right)}}{6} - \left[ {4 + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6}} \right] = 247\)
⇔ (n + 6)(n + 5)(n + 4) – n(n – 1)(n – 2) = 1506
⇔ 18n2 + 72n – 1386 = 0
\( \Leftrightarrow \left[ \begin{array}{l}n = - 11\\n = 7\end{array} \right.\)
Vì n > 3 nên n = 7.
Vậy đáp án đúng là C.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm x, biết: \({x^2} + 5x + 4 - 5\sqrt {{x^2} + 5x + 28} = 0\).
Xem lời giải »
Câu 2:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Xem lời giải »
Câu 3:
Viết các số (0,25)8 và (0,125)4 dưới dạng các lũy thừa với cơ số 0,5.
Xem lời giải »
Câu 4:
Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.
Xem lời giải »
Câu 5:
Tìm giá trị lớn nhất của Q = \(\frac{1}{{x - 2\sqrt x + 3}}\).
Xem lời giải »
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Xem lời giải »
Câu 7:
Giải phương trình: \[{x^2}\; - 2\sqrt 3 x + 2 = 0\].
Xem lời giải »
Câu 8:
Tìm x, y, z nguyên dương thỏa mãn: xy + 1 chia hết cho z; yz + 1 chia hết cho x; xz + 1 chia hết cho y.
Xem lời giải »