X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản


Câu hỏi:

Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm (I) và (II). Mỗi sản phẩm (I) bán lãi 500 nghìn đồng, mỗi sản phẩm (II ) bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm (I) thì Chiến phải làm việc trong (3) giờ, Bình phải làm việc trong (1) giờ. Để sản xuất được một sản phẩm (II) thì Chiến phải làm việc trong (2) giờ, Bình phải làm việc trong (6) giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá (180) giờ và Bình không thể làm việc quá (220) giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là:

A. 32 triệu đồng

B. 35 triệu đồng

C. 14 triệu đồng

D. 30 triệu đồng

Trả lời:

Đáp án đúng là: A

Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

Ta có hệ bất phương trình sau: \[\left\{ \begin{array}{l}3x + 2y \le 180\\x + 6y \le 220\\x > 0\\y > 0\end{array} \right.\]

Miền nghiệm của hệ trên là:

Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản (ảnh 1)

Tiền lãi trong một tháng của xưởng là T = 0,5x + 0,4y (triệu đồng).

Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

Tại A(60; 0) thì T = 30 triệu đồng.

Tại B(40; 30) thì T = 32 triệu đồng.

Vậy tiền lãi lớn nhất trong một tháng của xưởng là 3232 triệu đồng.

Đáp án cần chọn là: A

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, đem lại mức lời 40 000 đồng. Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, đem lại mức lời 30 000 đồng. Xưởng có 200 kg nguyên liệu và 1 200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?

Xem lời giải »


Câu 2:

Cho tam giác ABC  có a+ b‒ c> 0. Khi đó:

Xem lời giải »


Câu 3:

Cho đường tròn (C): x2 + y2 ‒ 2x + 2y ‒ 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.

Xem lời giải »


Câu 4:

Cho hai điểm A(1; ‒2; 0), B(0; 1; 1), độ dài đường cao OH của tam giác OAB là:

Xem lời giải »


Câu 5:

Tìm m để phương trình có nghiệm \[\sin x - \sqrt 3 \cos x = m\]

Xem lời giải »