Rút gọn các phân thức sau: a) (y^3 - x^3) / (x^3 - 3x^2y + 3xy^2 - y^3)
Câu hỏi:
Rút gọn các phân thức sau:
a) \(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)
b) \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)
c) \(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4x - 5}}\).
Trả lời:
a) Ta có:
\(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)
\( = \frac{{(y - x)\left( {{y^2} + xy + {x^2}} \right)}}{{{{(x - y)}^3}}}\)
\( = - \frac{{{x^2} + xy + {y^2}}}{{{{\left( {x - y} \right)}^2}}}\)
b) Ta có: \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)
\( = \frac{{\left( {{x^5} - {x^2}} \right) + {x^2} + x + 1}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2}\left( {{x^3} - 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2}(x - 1)\left( {{x^2} + x + 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{\left( {{x^2} + x + 1} \right)\left( {{x^3} - {x^2} + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^3} - {x^2} + 1}}{x}\)
c) Ta có:
\(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4{\rm{x}} - 5}}\)
\( = \frac{{2{x^2} + 2x - 3x - 3}}{{{x^2} + x - 5x - 5}}\)
\( = \frac{{2x\left( {x + 1} \right) - 3\left( {x + 1} \right)}}{{x\left( {x + 1} \right) - 5\left( {x + 1} \right)}}\)
\( = \frac{{\left( {x + 1} \right)\left( {2x - 3} \right)}}{{\left( {x + 1} \right)\left( {x - 5} \right)}}\)
\( = \frac{{2x - 3}}{{x - 5}}\)