X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm GTLN, GTNN của hàm số: y = sin^2 x + cosx + 2


Câu hỏi:

Tìm GTLN, GTNN của hàm số: y = sin2 x + cosx + 2

Trả lời:

Ta có: y = sin2 x + cosx + 2

= 1 − cos2 x + cosx + 2

= −cos2 x + cosx + 3

\( = - \left( {{{\cos }^2}x - \cos x + \frac{1}{4}} \right) + \frac{{13}}{4}\)

\( = - {\left( {\cos x - \frac{1}{2}} \right)^2} + \frac{{13}}{4}\)

Do −1 ≤ cos x ≤ 1

\( \Rightarrow - \frac{3}{2} \le \cos x - \frac{1}{2} \le \frac{1}{2}\)

\( \Rightarrow 0 \le {\left( {\cos x - \frac{1}{2}} \right)^2} \le \frac{9}{4}\)

\( \Rightarrow - \frac{9}{4} \le - {\left( {\cos x - \frac{1}{2}} \right)^2} \le 0\)

\( \Rightarrow 1 \le - {\left( {\cos x - \frac{1}{2}} \right)^2} + \frac{{13}}{4} \le \frac{{13}}{4}\)

+) min y = 1

Dấu “=” xảy ra Û x =p + k2p, (k Î ℤ)

+) \(\max y = \frac{{13}}{4}\)

Dấu “=” xảy ra \( \Leftrightarrow x = \pm \frac{\pi }{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right)\)

Vậy GTNN của hàm số là 1 khi x =p + k2p, (k Î ℤ) và GTLN của hàm số là \(\frac{{13}}{4}\) khi \(x = \pm \frac{\pi }{3} + k2\pi ,\;\left( {k \in \mathbb{Z}} \right)\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Tìm hệ số của số hạng chứa x10 trong khai triển của biểu thức \({\left( {3{x^3} - \frac{2}{{{x^2}}}} \right)^5}\)

Xem lời giải »


Câu 6:

Tìm hệ số của số hạng chứa x10 trong khai triển \(f\left( x \right) = {\left( {\frac{1}{4}{x^2} + x + 1} \right)^2}{\left( {x + 2} \right)^{3n}}\) với n là số tự nhiên thỏa mãn hệ thức \(A_n^3 + C_n^{n - 2} = 14n\)

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\) nghịch biến trên [1; +∞).

Xem lời giải »


Câu 8:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \sqrt {5 - m\sin x - \left( {m + 1} \right)\cos x} \) xác định trên ℝ?

Xem lời giải »