Tìm GTLN, GTNN của hàm số: y = sin^2x + 2sinx.cosx - cos^2x + 5
Câu hỏi:
Tìm GTLN, GTNN của hàm số: y = sin²x + 2sinx.cosx − cos²x + 5.
Trả lời:
Ta có: y = sin²x + 2sinx.cosx − cos²x + 5
= (sin²x − cos²x) + 2sinx.cosx + 5
= −cos 2x + sin 2x + 5
= sin 2x − cos 2x + 5
\( = \sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) + 4\)
Do \( - 1 \le \sin \left( {2x - \frac{\pi }{4}} \right) \le 1\)
\( \Rightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) \le \sqrt 2 \)
\( \Rightarrow 5 - \sqrt 2 \le \sqrt 2 \sin \left( {2x - \frac{\pi }{4}} \right) + 5 \le 5 + \sqrt 2 \)
+) \(\min y = 5 - \sqrt 2 \)
Dấu “=” xảy ra \( \Leftrightarrow 2x - \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \)
\( \Leftrightarrow x = - \frac{\pi }{8} + k\pi ,\;\left( {k \in \mathbb{Z}} \right)\)
+) \(\max y = 5 + \sqrt 2 \)
Dấu “=” xảy ra \( \Leftrightarrow 2x - \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \)
\( \Leftrightarrow x = \frac{{3\pi }}{8} + k\pi ,\;\left( {k \in \mathbb{Z}} \right)\)
Vậy GTNN của hàm số là \(5 - \sqrt 2 \) khi \(x = - \frac{\pi }{8} + k\pi ,\;\left( {k \in \mathbb{Z}} \right)\) và GTLN của hàm số là \(5 + \sqrt 2 \) khi \(x = \frac{{3\pi }}{8} + k\pi ,\;\left( {k \in \mathbb{Z}} \right)\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).
Xem lời giải »
Câu 2:
Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).
Xem lời giải »
Câu 3:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.
Xem lời giải »
Câu 4:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.
Xem lời giải »
Câu 6:
Tìm hệ số của số hạng chứa x10 trong khai triển của biểu thức \({\left( {3{x^3} - \frac{2}{{{x^2}}}} \right)^5}\)
Xem lời giải »
Câu 7:
Tìm hệ số của số hạng chứa x10 trong khai triển \(f\left( x \right) = {\left( {\frac{1}{4}{x^2} + x + 1} \right)^2}{\left( {x + 2} \right)^{3n}}\) với n là số tự nhiên thỏa mãn hệ thức \(A_n^3 + C_n^{n - 2} = 14n\)
Xem lời giải »
Câu 8:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\) nghịch biến trên [1; +∞).
Xem lời giải »