Tập giá trị T của hàm số y = sin2x là A. T = [–1; 1]. B. T = [0; 1]. C. T = (–1; 1). D. T = [–2; 2].
Câu hỏi:
Trả lời:
Lời giải
Đáp án đúng là: A
Ta có –1 ≤ sin2x ≤ 1.
Suy ra –1 ≤ y ≤ 1.
Do đó T = [–1; 1].
Vậy ta chọn phương án A.
Câu hỏi:
Trả lời:
Lời giải
Đáp án đúng là: A
Ta có –1 ≤ sin2x ≤ 1.
Suy ra –1 ≤ y ≤ 1.
Do đó T = [–1; 1].
Vậy ta chọn phương án A.
Câu 1:
Câu 5:
Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm trên BC kéo dài sao cho 5JB = 2JC. Gọi G là trọng tâm tam giác.
a) Biểu diễn \(\overrightarrow {AB} ,\overrightarrow {AC} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \) và biểu diễn \(\overrightarrow {AJ} \) qua \(\overrightarrow {AB} ,\overrightarrow {AC} \).
b) Biểu diễn \(\overrightarrow {AG} \) theo hai vectơ \(\overrightarrow {AI} ,\overrightarrow {AJ} \).
Câu 6:
Cho tam giác ABC có AB = 2, AC = 3, \[\widehat {BAC} = 60^\circ \]. Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn \(\overrightarrow {AD} = \frac{7}{{12}}\overrightarrow {AC} \).
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).
b) Biểu diễn \(\overrightarrow {AM} ,\,\overrightarrow {BD} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \).
c) Chứng minh AM ⊥ BD.
Câu 7: