Tìm giá trị n thuộc N thỏa mãn: X(n + 1) 1 + 3C(n+2) 2 = C(n+1) 3
Câu hỏi:
Tìm giá trị n Î ℕ thỏa mãn: \(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\).
Trả lời:
\(C_{n + 1}^1 + 3C_{n + 2}^2 = C_{n + 1}^3\)
\( \Leftrightarrow n + 1 + 3\,.\,\frac{{\left( {n + 2} \right)!}}{{2!\,.\,n!}} = \frac{{\left( {n + 1} \right)!}}{{3!\,.\,\left( {n - 2} \right)!}}\)
\( \Leftrightarrow n + 1 + \frac{3}{2}\,.\,\left( {n + 2} \right)\left( {n + 1} \right) = \frac{1}{6}\,.\,\left( {n + 1} \right)n\left( {n - 1} \right)\)
\( \Leftrightarrow n + 1 + \frac{3}{2}\,.\,\left( {{n^2} + 3n + 2} \right) = \frac{1}{6}\,.\,\left( {{n^3} - n} \right)\)
\( \Leftrightarrow n + 1 + \frac{3}{2}{n^2} + \frac{9}{2}n + 3 = \frac{1}{6}{n^3} - \frac{1}{6}n\)
\( \Leftrightarrow \frac{1}{6}{n^3} - \frac{3}{2}{n^2} - \frac{{17}}{3}n - 4 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 12\;\left( n \right)\\n = - 1\;\left( l \right)\\n = - 2\;\left( l \right)\end{array} \right.\)
Vậy n = 12 là số nguyên dương cần tìm.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?
Xem lời giải »
Câu 2:
Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước?
Xem lời giải »
Câu 3:
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f (x) = −x2 − 4x + 3 trên đoạn [0; 4].
Xem lời giải »
Câu 4:
Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).
Xem lời giải »
Câu 5:
Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.
Xem lời giải »
Câu 6:
Cho các mệnh đề sau:
a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).
b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).
c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a
d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.
Số mệnh đề đúng là:
Xem lời giải »
Câu 8:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(−2; 4) và B(8; 4). Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C.
Xem lời giải »