Tìm giá trị nhỏ nhất, lớn nhất của hàm số y = sinx + sin(x + 2pi/3)
Câu hỏi:
Tìm giá trị nhỏ nhất, lớn nhất của hàm số y = sinx + \(\sin \left( {x + \frac{{2\pi }}{3}} \right)\).
Trả lời:
y = sinx + \(\sin \left( {x + \frac{{2\pi }}{3}} \right)\)
= sinx – \(\frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \sin \left( {x + \frac{\pi }{3}} \right)\)
Ta có: –1 ≤ sinx ≤ 1 với mọi x
Nên –1 ≤ \(\sin \left( {x + \frac{\pi }{3}} \right)\) ≤ 1
Vậy giá trị lớn nhất của y = 1 khi \(\sin \left( {x + \frac{\pi }{3}} \right) = 1 \Leftrightarrow x = \frac{\pi }{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\)
Giá trị nhỏ nhất của y = – 1 khi \(\sin \left( {x + \frac{\pi }{3}} \right) = - 1 \Leftrightarrow x = - \frac{{5\pi }}{6} + k2\pi \left( {k \in \mathbb{Z}} \right)\).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).
Xem lời giải »
Câu 2:
Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.
Xem lời giải »
Câu 4:
Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).
Xem lời giải »
Câu 6:
Đồ thị hàm số y = x3 − 3x2 − 9x + 1 có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB?
Xem lời giải »
Câu 7:
Giải phương trình: sin4x + \({\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\).
Xem lời giải »
Câu 8:
Giải phương trình: 4(sin4x + cos4x) + \(\sqrt 3 \sin 4x = 2\).
Xem lời giải »