X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm GTLN, GTNN của biểu thức A = (x^2 - 8x + 25) / (x^2 - 6x + 25)


Câu hỏi:

Tìm GTLN, GTNN của biểu thức A = \(\frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}}\).

Trả lời:

Ta có: \(A - \frac{1}{2} = \frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}} - \frac{1}{2}\)

\(A - \frac{1}{2} = \frac{{2\left( {{x^2} - 8x + 25} \right)}}{{2\left( {{x^2} - 6x + 25} \right)}} - \frac{{{x^2} - 8x + 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{2{x^2} - 16x + 50 - {x^2} + 6x - 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{{x^2} - 10x + 25}}{{2\left( {{x^2} - 6x + 25} \right)}}\)

\(A - \frac{1}{2} = \frac{{{{\left( {x - 5} \right)}^2}}}{{2\left( {{x^2} - 6x + 25} \right)}} \ge 0,\forall x\)

\(A \ge \frac{1}{2}\)

Dấu “=” xảy ra khi x – 5 = 0 hay x = 5

Lại có: A = \(\frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}}\)

\(A - \frac{9}{8} = \frac{{{x^2} - 8x + 25}}{{{x^2} - 6x + 25}} - \frac{9}{8}\)

\[A - \frac{9}{8} = \frac{{8\left( {{x^2} - 8x + 25} \right)}}{{8\left( {{x^2} - 6x + 25} \right)}} - \frac{{9\left( {{x^2} - 8x + 25} \right)}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{8{x^2} - 64x + 200 - 9{x^2} + 54x - 225}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{ - {x^2} - 10x - 25}}{{8\left( {{x^2} - 6x + 25} \right)}}\]

\[A - \frac{9}{8} = \frac{{ - {{\left( {x + 5} \right)}^2}}}{{8\left( {{x^2} - 6x + 25} \right)}} \le 0,\forall x\]

Suy ra: \(A \le \frac{9}{8}\)

Dấu “=” xảy ra khi x + 5 = 0 hay x = –5

Vậy x = 5 thì biểu thức có GTNN là \(\frac{1}{2}\) và x = –5 thì biểu thức có GTLN là \(\frac{9}{8}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »