X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho các số x, y, z dương thoả mãn x^2 + y2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu


Câu hỏi:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Trả lời:

M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}} = \left( {\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}} \right)\left( {{x^2} + {y^2} + {z^2}} \right)\)(do x2 + y2 + z2 = 1)

\({\left( {\frac{1}{4} + \frac{1}{2} + 1} \right)^2} = \frac{{49}}{{16}}\) (bất đẳng thức Bunhia)

Dấu “=” khi \(\left\{ \begin{array}{l}{x^2} = \frac{1}{7}\\{y^2} = \frac{2}{7}\\{z^2} = \frac{4}{7}\end{array} \right.\) \(\left\{ \begin{array}{l}x = \frac{1}{{\sqrt 7 }}\\y = \sqrt {\frac{2}{7}} \\z = \frac{2}{{\sqrt 7 }}\end{array} \right.\)

Vậy giá trị nhỏ nhất của M là \(\frac{{49}}{{16}}\)khi \(x = \frac{1}{{\sqrt 7 }};y = \sqrt {\frac{2}{7}} ;z = \frac{2}{{\sqrt 7 }}\)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 4:

Tìm x, y thỏa mãn 2x2 + y2 + 9 = 6x + 2xy.

Xem lời giải »


Câu 5:

Tổ 1 và tổ 2 chăm sóc 28500 m2 rừng. Sau khi chuyển 2500 m2 rừng của tổ 1 sang tổ 2 thì tổ 2 chăm sóc nhiều hơn tổ 1400 m2 rừng. Hỏi lúc đầu mỗi tổ chăm sóc bao nhiêu m2 rừng?

Xem lời giải »


Câu 6:

Các số thực a,b,c,d thỏa mãn đồng thời các điều kiện abc – d = 1, bcd – a = 2, cda – b = 3 và dab – c = –6. Chứng minh: a + b + c + d ≠ 0.

Xem lời giải »