X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho phương trình (m^2 + 2)cos^2x - 2msin2x + 1 = 0. Để phương trình có nghiệm


Câu hỏi:

Cho phương trình (m2 + 2)cos2x – 2msin2x + 1 = 0. Để phương trình có nghiệm thì giá trị thích hợp của tham số m là

A. \(\frac{{ - 1}}{2} \le m \le \frac{1}{2}\);

B. −1 ≤ m ≤ 1;

C. \( - \frac{1}{4} \le m \le \frac{1}{4}\);

D. |m| ≥ 1.

Trả lời:

Đáp án đúng là: D

Ta có: (m2 + 2)cos2x – 2msin2x + 1 = 0

\( \Leftrightarrow \left( {{m^2} + 2} \right).\frac{{1 + \cos 2x}}{2} - 2m\sin 2x + 1 = 0\)

(m2 + 2)cos2x – 4msin2x = −(m2 + 2) – 2

(m2 + 2)cos2x – 4msin2x = −m2 – 4

Để phương trình có nghiệm thì:

(m2 + 2)2 + 16m2 ≥ (m2 + 4)2

m4 + 4m2 + 4 + 16m2 ≥ m4 + 8m2 + 16

12m2 ≥ 12

|m| ≥ 1

Vậy |m| ≥ 1 thì thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tập xác định D của hàm số y = ln(x – 1).

Xem lời giải »


Câu 2:

Tìm tập xác định D của hàm số y = ln(x – 3).

Xem lời giải »


Câu 3:

Tìm m để phương trình cos2x + 2(m + 1)sinx − 2m – 1 = 0 có đúng 3 nghiệm x (0; π).

Xem lời giải »


Câu 4:

Tìm m để phương trình 2sin2x – (2m + 1)sinx + 2m – 1 = 0 có nghiệm thuộc khoảng t (−1; 0).

Xem lời giải »


Câu 5:

Cho hàm số f(x) = ax4 + bx3 + cx2 (a, b, c ℝ). Hàm số y = f '(x) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình 2f(x) + 3 = 0.

Cho hàm số f(x) = ax^4 + bx^3 + cx^2 (a, b, c thuộc R). Hàm số y = f '(x) có đồ thị như  (ảnh 1)

Xem lời giải »


Câu 6:

Cho tứ giác ABCD như hình dưới đây: Điểm E là trung điểm của đoạn thẳng AB. Điểm F là trung điểm của đoạn thẳng BC. Điểm G là trung điểm của đoạn thẳng DC. Điểm H là trung điểm của đoạn thẳng AD. Hỏi tứ giác EFGH là hình gì? Chứng minh điều đó.

Cho tứ giác ABCD như hình dưới đây: Điểm E là trung điểm của đoạn thẳng  (ảnh 1)

Xem lời giải »


Câu 7:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 – 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1)?

Xem lời giải »


Câu 8:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0; 2] không vượt quá 30. Tổng giá trị các phân tử của tập S bằng

Xem lời giải »