X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm m để phương trình x^3 – 2x^2 + (1 – m)x + m = 0 có 3 nghiệm phân biệt x1, x2, x3


Câu hỏi:

Tìm m để phương trình x3 – 2x2 + (1 – m)x + m = 0 có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x12 + x22 + x32 = 4.

Trả lời:

x3 – 2x2 + (1 – m)x + m = 0 (*)

(x3 – 2x2 + x) – mx + m = 0

x(x2 – 2x + 1) – m(x – 1) = 0

x(x – 1)2 – m(x – 1) = 0

(x – 1)[(x(x – 1) – m] = 0

(x – 1)(x2 – x – m) = 0

⇔ x=1x2xm=01

Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) có 2 nghiệm phân biệt khác 1. Tức là:

 Δ>0121m0  1+4m>0m0⇔ m>14m0

Ta có nghiệm của phương trình (1) là:

x1=1+1+4m2x2=11+4m2

Suy ra:  x12 + x221+1+4m22+11+4m22

=1+21+4m+1+4m+121+4m+1+4m4=1+2m

Có x12 + x22 + x32 = 4

1 + 2m + 1 = 4

m = 1 (thỏa mãn)

Vậy m = 1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Cho tam giác ABC. I nằm trên BC cho 2CI = 3BI. J nằm trên đường thẳng BC cho 5JB = 2JC. G là trọng tâm tam giác ABC.

a) Biểu diễn AB,AC  theo 2 vectơ AI,AJ  và biểu diễn  AJ qua AB,AC .

b)Tính AG  theo AI,AJ .

Xem lời giải »


Câu 6:

Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:

a) OM song song O'N;

b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.

Xem lời giải »


Câu 7:

Tìm góc α ∈ π6;π4;π3;π2  để phương trình cos2x + 3 sin2x – 2cosx = 0 tương đương với phương trình cos(2x – α) = cosx.

Xem lời giải »


Câu 8:

Tính diện tích hình thang vuông ABCD, biết  A^=B^ = 90°, AB = 3cm, AD = 4cm và BCD^  = 135°.

Xem lời giải »