Tìm số nguyên dương n thỏa mãn: 1/2 Cn 0 - 1/3Cn 1 + 1/4Cn 2 - 1/5Cn 3
Câu hỏi:
Tìm số nguyên dương n thỏa mãn:
12C0n−13C1n+14C2n−15C3n+...+(−1)nn+2Cnn=1156.
Trả lời:
Xét công thức tổng quát:
(−1)kk+2Ckn=(−1)kk+2.n!k!.(n−k)!=(−1)k.(k+1)(n+1)(n+2).(n+2)!(k+2)!.(n−k)!
=1(n+1)(n+2).(−1)k.(k+1).Ck+2n+2
=1(n+1)(n+2).[(−1)k.(−1).Ck+2n+2+(−1)k.(k+2).Ck+2n+2]
=1(n+1)(n+2).[(−1).(−1)k+2.Ck+2n+2+(−1)k.(n+2).Ck+1n+1]
=−1(n+1)(n+2).(−1)k+2.Ck+2n+2−1n+1.(−1)k+1.Ck+1n+1
Khi đó: 12C0n−13C1n+14C2n−15C3n+...+(−1)nn+2Cnn
=−1(n+1)(n+2)[C2n+2−C3n+2+C4n+2+...+(−1)n+2Cn+2n+2]
−1n+1[−C1n+1+C2n+1−C3n+1+...+(−1)n+1Cn+1n+1]
=−1(n+1)(n+2)[(−1+1)n+2−C0n+2+C1n+2]−1n+1[(−1+1)n+1−C0n+1]
\( = - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\left( { - 1 + n + 2} \right) - \frac{1}{{n + 1}}\,.\,\left( { - 1} \right)\)
=−1(n+1)(n+2).(n+1)−1n+1.(−1)
=−1n+2+1n+1=(n+2)−(n+1)(n+1)(n+2)
=n+2−n−1(n+1)(n+2)=1(n+1)(n+2)
Do đó, theo bải ra ta có: 1(n+1)(n+2)=1156
Û (n + 1)(n + 2) = 156
Û n2 + 3n + 2 = 156
Û n2 + 3n − 154 = 0
⇔[n=11(n)n=−14(l)
Vậy n = 11 là số nguyên dương cần tìm.