Tìm tập hợp các giá trị của tham số thực m để phương trình 6^x + (3 - m) . 2x - m = 0
Câu hỏi:
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Trả lời:
Đáp án đúng là: C
Ta có:
6x + (3 – m) . 2x – m = 0
⇔ 6x + 3 . 2x – m . 2x – m = 0
⇔m=6x+3.2x1+2x
Xét hàm số 6x+3.2x1+2x liên tục trên (0; 1)
Ta có: f′(x)=12x.ln3+6x.ln6+3.2x.ln2(1+2x)2>0;∀x∈(0;1)
Suy ra hàm số 6x+3.2x1+2x đồng biến trên (0; 1)
Do đó phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1) khi và chỉ khi f(0) < m < f(1) ⇔ 2 < m < 4
Vậy ta chọn đáp án C.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ →0 có điểm đầu và điểm cuối là đỉnh của lục giác.
Xem lời giải »
Câu 2:
Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.
Xem lời giải »
Câu 3:
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Xem lời giải »
Câu 5:
Cho phương trình 2(x−1)2.log2(x2−2x+3)=4|x−m|log2(2|x−m|+2) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.
Xem lời giải »
Câu 6:
Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: P=1√1+x2+1√1+y2+1√1+z2.
Xem lời giải »
Câu 7:
Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp tam giác đó.
Xem lời giải »
Câu 8:
Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào y
(y – 5)(y + 8) – (y + 4)(y – 1).
Xem lời giải »