Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x^3-3( m+1)x^2+ 12mx-3m+ 4 ( C) có
Câu hỏi:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3-3( m+1) x2+ 12mx-3m+ 4 ( C) có hai điểm cực trị là A và B sao cho hai điểm này cùng với điểm C(-1; -9/2) lập thành tam giác nhận gốc tọa độ làm trọng tâm.
A. m= -1/2
B. m= -2
C. m=2
D. m =1/2
Trả lời:
Ta có đạo hàm y’ = 3x2- 6( m+ 1) x+ 12m.
Hàm số có hai cực trị khi và chỉ khi y’ = 0 có hai nghiệm phân biệt
Hay (m-1) 2> 0 suy ra m≠1 ( *)
Khi đó hai điểm cực trị là A( 2; 9m) : B( 2m; -4m3+ 12m2-3m+ 4).
Tam giác ABC nhận O làm trọng tâm
Chọn A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số y= x3-3x2-m-1 có đồ thị (C) . Giá trị của tham số m để đồ thị (C) cắt trục hoành tại ba điểm phân biệt lập thành cấp số cộng là
Xem lời giải »
Câu 2:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số đồng biến trên khoảng ?
Xem lời giải »
Câu 3:
Tập nghiệm của bất phương trình: có bao nhiêu giá trị nguyên trong ( 0; 2008]
Xem lời giải »
Câu 4:
Cho hàm số có đồ thị (C) và đường thẳng d: y=x+m. Đường thẳng d cắt đồ thị (C) tại hai điểm A và B. Với C( -2; 5) , giá trị của tham số m để tam giác ABC đều là
Xem lời giải »
Câu 5:
Cho hàm số y= x4- 2( 1-m2) x2+ m+1. Tồn tại giác trị của m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất . Khi đó khẳng định nào đúng?
Xem lời giải »