X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị của tham số m để hàm số  y=mx^4+(m-1)x^2+1-2m


Câu hỏi:

Tìm tất cả các giá trị của tham số m để hàm số y=mx4+m1x2+12m có đúng một điểm cực trị.

A. m1;+

B. m;0

C. m0;1

D. m01;+

Trả lời:

Nếu m=0 thì y=x2+1 là hàm bậc hai nên chỉ có duy nhất một cực trị.

Khi m0, ta có y'=4mx3+2m1x=2x2mx2+m1; y'=0x=0x2=1m2m.

Để hàm số có đúng một điểm cực trị khi 1m2m0m1m<0.

Kết hợp hai trường hợp ta được m0m1. Chọn D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Biết rằng đồ thị hàm số y=x43x2+ax+b có điểm cực tiểu là A2;2. Tính tổng S=a+b.

Xem lời giải »


Câu 6:

Biết rằng đồ thị hàm số y=ax4+bx2+c a0 có điểm đại A0;3 có điểm cực tiểu B1;5. Mệnh đề nào sau đây là đúng?

Xem lời giải »


Câu 7:

Cho hàm số y=x42m2m+1x2+m1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu, đồng thời khoảng cách giữa hai điểm cực tiểu ngắn nhất.

Xem lời giải »


Câu 8:

Cho hàm số y=x42mx2+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có ba điểm cực trị A,B,C thỏa mãn OA.OB.OC=12 với O là gốc tọa độ?

Xem lời giải »