X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm tất cả các giá trị thực của tham số m để hàm số y=x^4+2mx^2+m^2+m


Câu hỏi:

Tìm tất cả các giá trị thực của tham số m để hàm số y=x4+2mx2+m2+m có ba điểm cực trị.

A. m=0

B. m>0

C. m<0

D. m0.

Trả lời:

Ta có y'=4x3+4mx=4xx2+m; y'=0x=0x2=m.

Để hàm số có ba điểm cực trị <=> y'=0 có ba nghiệm phân biệt m>0m<0.

Chọn C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Gọi  x1,  x2 là hai điểm cực trị của hàm số  y=x33mx2+3m21xm3+m. Tìm các giá trị của tham số m để  x12+x22x1x2=7.

Xem lời giải »


Câu 2:

Gọi  x1,  x2  là hai điểm cực trị của hàm số  y=4x3+mx23x. Tìm các giá trị thực của tham số m để  x1+4x2=0.

Xem lời giải »


Câu 3:

Cho hàm số  y=x33x29x+m. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.

Xem lời giải »


Câu 4:

Cho hàm số  y=13x3m+2x2+2m+3x+2017 với m là tham số thực. Tìm tất cả các giá trị của m để x=1 là hoành độ trung điểm của đoạn thẳng nối hai điểm cực đại, cực tiểu của đồ thị hàm số.

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị thực của tham số m để hàm số y=mx4+m+1x2+1 có một điểm cực tiểu.

Xem lời giải »


Câu 6:

Tìm tất cả các giá trị của tham số m để hàm số y=mx4+m1x2+12m có đúng một điểm cực trị.

Xem lời giải »


Câu 7:

Biết rằng đồ thị hàm số y=x43x2+ax+b có điểm cực tiểu là A2;2. Tính tổng S=a+b.

Xem lời giải »


Câu 8:

Biết rằng đồ thị hàm số y=ax4+bx2+c a0 có điểm đại A0;3 có điểm cực tiểu B1;5. Mệnh đề nào sau đây là đúng?

Xem lời giải »