Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(-2; -2), C(3; 1)
Câu hỏi:
Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1; 3), B(−2; −2), C(3; 1). Tính cosin góc A của tam giác.
Trả lời:
Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 3;\; - 5} \right)\\\overrightarrow {AC} = \left( {2;\; - 2} \right)\end{array} \right.\)
Khi đó \(\cos \widehat A = \cos \left( {\overrightarrow {AB} ;\;\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} \,.\,\overrightarrow {AC} }}{{AB\,.\,AC}}\)
\( = \frac{{\left( { - 3} \right)\,.\,2 + \left( { - 5} \right)\,.\,\left( { - 2} \right)}}{{\sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 5} \right)}^2}} \,.\,\sqrt {{2^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\left( { - 6} \right) + 10}}{{\sqrt {34} \,.\,\sqrt 8 }} = \frac{4}{{4\sqrt {17} }} = \frac{1}{{\sqrt {17} }}\)
Vậy cosin góc A của tam giác là \(\frac{1}{{\sqrt {17} }}\).