Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d1: x = r, y = 4 - t, x = -1 + 2t
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng:
\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.;\,\,{d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}};\,\,{d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\)
Viết phương trình đường thẳng \(\Delta \), biết \(\Delta \) cắt ba đường thẳng d1, d2, d3 lần lượt tại các điểm A, B, C sao cho AB = BC.
Trả lời:
Xét ba điểm A, B, C lần lượt nằm trên ba đường thẳng d1, d2, d3.
Ta có: A(t, 4 – t, -1 + 2t); B(u, 2 – 3u, -3u); C(-1 + 5v, 1 + 2v, – 1 + v).
A, B, C thẳng hàng và AB = BC ⇔ B là trung điểm của AC
⇔ \(\left\{ {\begin{array}{*{20}{c}}{t + \left( { - 1 + 5v} \right) = 2u}\\{4 - t + \left( {1 + 2v} \right) = 2.\left( {2 - 3u} \right)}\\{ - 1 + 2t + \left( { - 1 + v} \right) = 2.\left( { - 3u} \right)}\end{array}} \right.\)
Giải hệ phương trình trên ta được: t = 1, u = 0, v = 0.
Suy ra A(1; 3; 1); B(0; 2; 0); C(-1; 1; -1).
Đường thẳng \(\Delta \) đi qua A, B, C có phương trình là: \(\frac{x}{1} = \frac{{y - 2}}{1} = \frac{z}{1}.\)
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.
Xem lời giải »
Câu 2:
Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.
Xem lời giải »
Câu 3:
Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là
Xem lời giải »
Câu 4:
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Xem lời giải »
Câu 5:
Tính tổng \(S = C_n^0 + 3C_n^1 + {3^2}C_n^2 + ... + {3^n}C_n^n.\)
Xem lời giải »
Câu 6:
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Xem lời giải »
Câu 7:
Cho hình phẳng giới hạn bởi các đường y = xlnx, y = 0, x = e quay xung quanh trục Ox tạo thành khối tròn xoay có thể tích bằng \(\frac{\pi }{a}\left( {b{e^3} - 2} \right).\) Tìm a và b.
Xem lời giải »
Câu 8:
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Xem lời giải »