X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Trong mặt phẳng Oxy, cho đường tròn (C'):x^2 + y –4x+10y+4=0. Viết phương trình đường tròn (C) biết (C')


Câu hỏi:

Trong mặt phẳng Oxy, cho đường tròn (C'):x² + y –4x+10y+4=0. Viết phương trình đường tròn (C) biết (C') là ảnh của (C) qua phép quay với tâm quay là gốc tọa độ 0 và góc quay bằng 270°.

Trả lời:

Đường tròn (C′) có tâm I′(2;−5) bán kính  R'=22+524=5

Ảnh của (C) qua phép quay là đường tròn (C′) có cùng bán kính, giả sử (C) có tâm I(x;y), bán kính R

R = R′ = 5

QO,270°(I) = I′(2;−5)

⇒ 2=x.cos270°y.sin270°5=x.sin270°+y.cos270°

⇒ 2=y5=x

I (5;2)

Phương trình đường tròn (C) là:

(x−5)2 + (y−2)2 = 25

hay x2 + y2 – 10x – 4y + 4 = 0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Cho bốn điểm A; B; C; D. Gọi I; J  lần lượt là trung điểm của các đoạn thẳng AB  và CD. Trong các đẳng thức sau, đẳng thức nào sai?

Xem lời giải »


Câu 6:

Cho đường tròn (O,R) cố định. Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm). Gọi H là giao điểm của OM, AB.

a) Chứng minh: OM vuông góc với AB và OH.OM = R2.

b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P), gọi I là trung điểm NP (I khác O). Chứng minh: A, M, O, I thuộc một đường tròn và tìm tâm của đường tròn đó.

c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA, MB theo thứ tự C,D. Biết MA = 5cm, tính chu vi tam giác MCD.

d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA, MB lần lượt tại E, F. Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất.

Xem lời giải »


Câu 7:

Bảng giá cước gọi quốc tế của công ty viễn thông A được cho bởi bảng sau:

Thời gian gọi (phút)

Giá cước điện thoại (đồng/phút)

Không quá 8 phút

6 500

Từ phút thứ 9 đến phút thứ 15

6 000

Từ phút thứ 16 đến phút thứ 25

5 500

Từ phút thứ 26 trở đi

5 000

Gọi T (đồng) là số tiền khách hàng phải trả khi gọi quốc tế trong t phút. Lập hàm số của T theo t.

Xem lời giải »


Câu 8:

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.

Xem lời giải »