Từ các chữ số: 1; 2; 3; 4; 5; 6. Có thể lập được bao nhiêu số có ba chữ số khác nhau
Câu hỏi:
Từ các chữ số: 1; 2; 3; 4; 5; 6. Có thể lập được bao nhiêu số có ba chữ số khác nhau và tổng của ba số đó chia hết cho 3.
Trả lời:
Gọi số cần tìm có dạng \(\overline {abc} \;\left( {1 \le a,\;b,\;c \le 6;\;a \ne b \ne c} \right)\)
Các bộ số (a; b; c) thỏa mãn là: (1; 2; 3); (4; 5; 6); (2; 3; 4); (1; 5; 6); (1; 3; 5); (1; 2; 6)
Số các số tạo được thỏa mãn yêu cầu là: 6.P3 = 36 (số).
Vậy lập được 36 số thỏa mãn yêu cầu bài toán.