b) Cho AB = 4; BC = 5; BD = 7. Tính AC.
Câu hỏi:
b) Cho AB = 4; BC = 5; BD = 7. Tính AC.
Trả lời:
b) Thay AB = 4, BC = 5, BD = 7 vào biểu thức 2(AB2 + BC2) = AC2 + BD2 ta được:
2.(42 + 52) = AC2 + 72 ⇒ AC2 = 2.(42 + 52) – 72 = 33
⇒AC=√33
Vậy AC=√33 .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Xem lời giải »
Câu 2:
b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.
Xem lời giải »
Câu 3:
Cho ∆ABC vuông tại A, có ˆC=30° . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính .
Xem lời giải »
Câu 4:
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
Xem lời giải »
Câu 5:
Giải phương trình:
(12x + 7)2(3x + 2)(2x + 1) = 3
Xem lời giải »
Câu 7:
Cho hàm số y = f(x) liên tục trên R. Biết rằng hàm số y = f '(x) có đồ thị như hình vẽ. Hàm số y = f(x2 – 5) nghịch biến trên khoảng nào sau đây?
Xem lời giải »
Câu 8:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH = 4 cm, HC = 9 cm.
a) Tính độ dài DE.
Xem lời giải »