b) Chứng minh MB2 = MC.MD.
Câu hỏi:
b) Chứng minh MB2 = MC.MD.
Trả lời:
b) Xét ∆MBC và ∆MDB, có:
chung;
(góc tạo bởi tia tiếp tuyến MB và dây cung BC và góc nội tiếp chắn cung BC).
Do đó (g.g).
Suy ra .
Vậy MB2 = MC.MD.
Câu hỏi:
b) Chứng minh MB2 = MC.MD.
Trả lời:
b) Xét ∆MBC và ∆MDB, có:
chung;
(góc tạo bởi tia tiếp tuyến MB và dây cung BC và góc nội tiếp chắn cung BC).
Do đó (g.g).
Suy ra .
Vậy MB2 = MC.MD.
Câu 1:
Cho bốn số nguyên dương a, b, c, d thỏa mãn a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số.
Câu 2:
Cho x + y = 3. Tính giá trị biểu thức:
A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.
Câu 3:
Cho hình vuông, nếu giảm cạnh hình vuông đó đi 7 m thì diện tích giảm đi 84 m2. Tính diện tích hình vuông ban đầu.
Câu 8:
Chứng minh rằng có vô số bộ ba số tự nhiên (a, b, c) sao cho a, b, c nguyên tố cùng nhau và số n = a2b2 + b2c2 + c2a2 là số chính phương.