X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của góc CHD .


Câu hỏi:

c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của CHD^ .

Trả lời:

c) Ta có MA = MB (tính chất hai tiếp tuyến cắt nhau) và OA = OB = R.

Suy ra OM là đường trung trực của đoạn AB.

Do đó OM AB tại H.

Tam giác OMB vuông tại B có BH là đường cao: MB2 = MH.MO.

Mà MB2 = MC.MD (kết quả câu b).

Suy ra MC.MD = MH.MO.

Xét ∆MCH và ∆MOD, có:

 OMD^ chung;

MCMO=MHMD (do MC.MD = MH.MO).

Do đó  ΔMCHΔMOD(c.g.c).

Suy ra  MHC^=MDO^   (1)

Vì vậy tứ giác CDOH nội tiếp.

Do đó OHD^=OCD^  .

ODC^=OCD^  (do tam giác OCD cân tại O).

Suy ra   OHD^=ODC^  (2)

Từ (1), (2), suy ra MHC^=OHD^  .

MHC^+CHB^=90°  và  OHD^+BHD^=90°.

Khi đó  CHB^=BHD^.

Vậy AB là phân giác của CHD^ .

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho bốn số nguyên dương a, b, c, d thỏa mãn a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số.

Xem lời giải »


Câu 2:

Cho x + y = 3. Tính giá trị biểu thức:

A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.

Xem lời giải »


Câu 3:

Cho hình vuông, nếu giảm cạnh hình vuông đó đi 7 m thì diện tích giảm đi 84 m2. Tính diện tích hình vuông ban đầu.

Xem lời giải »


Câu 4:

Tìm hệ số lớn nhất trong khai triển (1 + 2x)20.

Xem lời giải »


Câu 5:

Chứng minh các đẳng thức sau:

a) sin4α – cos4α + 1 = 2sin2α.

Xem lời giải »


Câu 6:

b, (1 + cotα)sin3α + (1 + tanα)cos3α = sinα + cosα.

Xem lời giải »


Câu 7:

Chứng minh rằng có vô số bộ ba số tự nhiên (a, b, c) sao cho a, b, c nguyên tố cùng nhau và số n = a2b2 + b2c2 + c2a2 là số chính phương.

Xem lời giải »


Câu 8:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD.

a) Chứng minh AM (SBC) và AN (SDC).

Xem lời giải »