X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Biết rằng hàm số f(X)=x^3-3x^2-9x+28  đạt giá trị nhỏ nhất trên đoạn [0;4] tại  x0


Câu hỏi:

Biết rằng hàm số  fx=x33x29x+28 đạt giá trị nhỏ nhất trên đoạn [0;4] tại  x0. Tính  P=x0+2018. 

A. P=3

B. P=2019

C. P=2021

D. P=2018

Trả lời:

Đạo hàm  f'x=3x26x9f'x=0x=10;4x=30;4.

Ta có  f0=28f3=1f4=8min0;4fx=1 khi  x=3=x0P=2021. Chọn C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm giá trị lớn nhất của hàm số  fx=x32x24x+1 trên đoạn  1;3.

Xem lời giải »


Câu 2:

Tìm giá trị lớn nhất của hàm số  fx=2x3+3x212x+2 trên đoạn  1;2.

Xem lời giải »


Câu 3:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số  fx=2x3+3x21 trên đoạn  2;12. Tính  P=Mm.

Xem lời giải »


Câu 4:

Xét hàm số  fx=43x32x2x3 trên  1;1. Mệnh đề nào sau đây là đúng?

Xem lời giải »


Câu 5:

Tìm giá trị lớn nhất của hàm số  fx=x42x2+5 trên đoạn  2;2.

Xem lời giải »


Câu 6:

Cho hàm số  fx=2x4+4x2+10. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [0;2]

Xem lời giải »


Câu 7:

Tìm giá trị nhỏ nhất của hàm số  fx=x2+3x1 trên đoạn  2;4.

Xem lời giải »