X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD. a) Chứng minh AM ⊥ (SBC) và AN ⊥ (SDC).


Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD.

a) Chứng minh AM (SBC) và AN (SDC).

Trả lời:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = 2a và vuông góc với đáy. Gọi M, N lần lượt là hình chiếu của A trên SB, SD. a) Chứng minh AM ⊥ (SBC) và AN ⊥ (SDC). (ảnh 1)

a) Ta có BC SA (do SA (ABCD)) và BC AB (do ABCD là hình vuông).

Suy ra BC (SAB).

Mà AM (SAB).

Do đó BC AM.

Mà AM SB (do M là hình chiếu của A trên SB).

Vậy AM (SBC).

Chứng minh tương tự, ta được AN (SDC).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho bốn số nguyên dương a, b, c, d thỏa mãn a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số.

Xem lời giải »


Câu 2:

Cho x + y = 3. Tính giá trị biểu thức:

A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.

Xem lời giải »


Câu 3:

Cho hình vuông, nếu giảm cạnh hình vuông đó đi 7 m thì diện tích giảm đi 84 m2. Tính diện tích hình vuông ban đầu.

Xem lời giải »


Câu 4:

Tìm hệ số lớn nhất trong khai triển (1 + 2x)20.

Xem lời giải »


Câu 5:

b) Chứng minh SC (AMN) và MN (SAC).

Xem lời giải »


Câu 6:

c) Gọi K là giao điểm của SC với mặt phẳng (AMN). Chứng minh AMKN có hai đường chéo vuông góc với nhau.

Xem lời giải »


Câu 7:

Cho a, b, c là các số dương. Chứng minh rằng  ab+c+bc+a+ca+b32.

Xem lời giải »


Câu 8:

Có bao nhiêu giá trị nguyên của m để hàm số y = mx4 + (m2 – 4)x2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?

Xem lời giải »