X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Các số thực a,b,c,d thỏa mãn đồng thời các điều kiện abc - d = 1, bcd - a = 2


Câu hỏi:

Các số thực a,b,c,d thỏa mãn đồng thời các điều kiện abc – d = 1, bcd – a = 2, cda – b = 3 và dab – c = –6. Chứng minh: a + b + c + d ≠ 0.

Trả lời:

Giả sử a + b + c + d = 0 b + c = −(a + d)

Cộng từng vế các điều kiện trên ta được

abc + bcd + cda + dab − (a + b + c + d) = 0

abc + bcd + cda + dab = 0

bc(a + d) + ad(b +c) = 0

bc(a + d) − ad(a + d) = 0

(a + d)(bc − ad) = 0

TH1: a + d = 0

Từ : abc – d = 1,bcd – a = 2, ta cộng lại ta được

abc + bcd−(a + d) = 3

bc(a + d)−(a + d) = 3

(a + d)(bc − 1) = 3

0 = 3 (Vô lí)

Th2 : bc – ad = 0

Nếu b = 0 a + c + d = 0(1)

Từ abc –d = 1 0 −d = 1 d = −1

Từ bcd – a =2 a = −2

Từ dab – c =−6 c = 6

Lúc này  a + c + d = − 2 + 6 + (−1) = 3 ≠ 0 (Trái với (1)

Do đó b ≠ 0, tương tự d ≠ 0

Từ bc – ad = 0 ab = cd (b, d ≠ 0)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b} = \frac{c}{d} = \frac{{a + c}}{{b + d}} = \frac{{ - \left( {b + d} \right)}}{{b + d}} = - 1\)

a = −b a + b = 0

Tương tụ như với a + d = 0 Vô lí

Vậy a + b + c + d ≠ 0 (đpcm).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho 2 điểm A(2;4), B(–2;1). Tìm điểm C thuộc Ox sao cho tam giác abc cân tại A.

Xem lời giải »


Câu 6:

Biểu thức liên hợp là gì?

Xem lời giải »


Câu 7:

Cho dãy số (un) có: \(\left\{ \begin{array}{l}{u_1} = 4\\{u_{n + 1}} = 3{u_n} + 4;\forall n = 1,2,3,...\end{array} \right.\).

Tính \(\lim \frac{{{u_n} + {2^n}}}{{{2^{n + 1}} - 3}}\).

Xem lời giải »


Câu 8:

Cho dãy số (un) có u1 = 4 và un+1 = 3un – 2. Tìm số hạng thứ 5 của dãy.

Xem lời giải »