X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

cho (3x - 2y) / 4 = (2z - 4x) / 3 = (4y - 3z) / 2. Chứng minh x : 2 = y : 3 = z : 4


Câu hỏi:

Cho \(\frac{{3x - 2y}}{4} = \frac{{2z - 4x}}{3} = \frac{{4y - 3z}}{2}\). Chứng minh x : 2 = y : 3 = z : 4.

Trả lời:

Ta có: \(\frac{{3x - 2y}}{4} = \frac{{2z - 4x}}{3} = \frac{{4y - 3z}}{2}\)

Suy ra: \(\frac{{12x - 8y}}{{16}} = \frac{{6z - 12x}}{9} = \frac{{8y - 6z}}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{{12x - 8y}}{{16}} = \frac{{6z - 12x}}{9} = \frac{{8y - 6z}}{4} = \frac{{12x - 8y + 6z - 12x + 8y - 6z}}{{16 + 9 + 4}} = \frac{0}{{29}} = 0\)

Suy ra: 12x = 8y hay \[\frac{x}{8} = \frac{y}{{12}} \Rightarrow \frac{x}{2} = \frac{y}{3}\left( 1 \right)\]

6z = 12x hay \[\frac{x}{6} = \frac{z}{{12}} \Rightarrow \frac{x}{2} = \frac{z}{4}\left( 2 \right)\]

Từ (1) và (2) suy ra: \[\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\] hay x : 2 = y : 3 = z : 4

Vậy x : 2 = y : 3 = z : 4.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả giá trị của tham số m để hàm số y = mx2 – (m + 6)x nghịch biến trên khoảng (–1; +∞).

Xem lời giải »


Câu 2:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem lời giải »


Câu 3:

Xe thứ nhất chở được 25 tấn hàng, xe thứ hai chở 35 tấn hàng, xe thứ ba chở bằng trung bình cộng 3 xe. Hỏi xe thứ 3 chở bao nhiêu tấn hàng?

Xem lời giải »


Câu 4:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 5:

Cho 3 điểm A, B, C thẳng hàng và phân biệt. Trong trường hợp nào thì vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {AC} \)cùng hướng, trường hợp nào thì 2 vectơ đó ngược hướng.

Xem lời giải »


Câu 6:

Cho hàm số y = f(x) = mx2 + 2(m – 6)x + 2. Có bao nhiêu giá trị nguyên của m để f(x) nghịch biến trên khoảng (–∞; 2)?

Xem lời giải »


Câu 7:

Biện luận theo m, số nghiệm của phương trình x3 – 3x2 – m = 0.

Xem lời giải »


Câu 8:

Cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho ID = IA.

a) Chứng minh ∆ABI = ∆ACI.

b) Chứng minh AC // BD.

c) Kẻ IK vuông góc với AB (K thuộc AB), IH vuông góc với CD (H thuộc CD). Chứng minh IK = IH.

Xem lời giải »