X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho a, b, c là các số dương tùy ý. Chứng minh rằng: bc/b + c + 2a + ca/c + a + 2b + ab/a + b + 2c nhỏ hơn bằng a + b + c/4


Câu hỏi:

Cho a, b, c là các số dương tùy ý. Chứng minh rằng:

\[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\].

Trả lời:

Lời giải

Ta có: \(b + c + 2a = \left( {a + b} \right) + \left( {a + c} \right) \ge 2\sqrt {\left( {a + b} \right)\left( {a + c} \right)} \)

\( \Rightarrow \left( {a + b} \right)\left( {a + c} \right) \le \frac{{{{\left( {a + b + a + c} \right)}^2}}}{4}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{{a + b + a + c}}{{4\left( {a + b} \right)\left( {a + c} \right)}}\)

\( \Leftrightarrow \frac{1}{{a + b + a + c}} \le \frac{1}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\)

\[ \Rightarrow \frac{{bc}}{{b + c + 2a}} \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right)\]

Tương tự ta có:

\[\frac{{ca}}{{c + a + 2b}} \le \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right)\]

\[\frac{{ab}}{{a + b + 2c}} \le \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\]

Suy ra \(VT = \frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}}\)

\( \le \frac{{bc}}{4}\left( {\frac{1}{{a + b}} + \frac{1}{{a + c}}} \right) + \frac{{ca}}{4}\left( {\frac{1}{{b + c}} + \frac{1}{{a + b}}} \right) + \frac{{ab}}{4}\left( {\frac{1}{{a + c}} + \frac{1}{{b + c}}} \right)\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\left( {bc + ac} \right) + \frac{1}{{a + c}}\left( {bc + ab} \right) + \frac{1}{{b + c}}\left( {ac + ab} \right)} \right]\)

\( = \frac{1}{4}\left[ {\frac{1}{{a + b}}\,.\,c\left( {b + a} \right) + \frac{1}{{a + c}}\,.\,b\left( {c + a} \right) + \frac{1}{{b + c}}\,.\,a\left( {c + b} \right)} \right]\)

\( = \frac{1}{4}\left( {c + b + a} \right) = \frac{{a + b + c}}{4} = VP\).

Vậy \[\frac{{bc}}{{b + c + 2a}} + \frac{{ca}}{{c + a + 2b}} + \frac{{ab}}{{a + b + 2c}} \le \frac{{a + b + c}}{4}\] (đpcm).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Xem lời giải »


Câu 2:

Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.

Xem lời giải »


Câu 3:

Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?

Xem lời giải »


Câu 4:

Chứng minh phương trình sau đây vô nghiệm:

5sin 2x + sin x + cos x + 6 = 0.

Xem lời giải »


Câu 5:

Cho góc a Î (90°; 180°). Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 6:

Cho a là góc tù. Mệnh đề nào đúng trong các mệnh đề sau?

Xem lời giải »


Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a; cạnh bên SA vuông góc với mặt đáy, \(SA = a\sqrt 3 \); gọi M là trung điểm AC. Tính khoảng cách từ M đến mp(SBC).

Xem lời giải »


Câu 8:

Cho hình chóp S.ABC, đáy ABC đều cạnh 2a. Cạnh bên SA vuông góc với mặt đáy. Góc giữa SB và (ABC) là 60°. Tính thể tích S.ABC.

Xem lời giải »