Cho a,b,c là các số tự nhiên, thỏa mãn a – b là số nguyên tố, 3c2 = c(a + b) + ab. Chứng minh rằng 8c + 1 là số chính phương.
Câu hỏi:
Cho a,b,c là các số tự nhiên, thỏa mãn a – b là số nguyên tố, 3c2 = c(a + b) + ab.
Chứng minh rằng 8c + 1 là số chính phương.
Trả lời:
Ta có: 3c2 = c(a + b) + ab ⇒ 4c2 = c2 + ca + cb + ab = (a + c)(b + c) (1)
Vì a – b là số nguyên tố ⇒ a > b và a + c > b + c ⇒ (b + c)2 < (a + c)(b + c) (2)
Từ (1) và (2) ⇒ b + c < 2c ⇒ b < c (3)
Ta lại có (a + c) – (b + c) = a – b là số nguyên tố
⇒ Hoặc a – b ∈ ƯC(a + c, b + c) hoặc (a + c, b + c) = 1
* Nếu a – b = p ∈ ƯC(a + c, b + c) ⇒ a + c = p.k và b + c = p.h (k, h ∈ ℕ)
⇒ pk – ph = a – b = p ⇒ k – h = 1 (vì p ≠ 0) ⇒ k = h + 1
Khi đó (1) trở thành (2c)2 = p2kh = p2k(k + 1) ⇒ k(k + 1) là số chính phương.
Mà k và k + 1 là hai số tự nhiên liên tiếp
⇒ k = 0 ⇒ b + c = pk = 0 (mâu thuẫn với (3))
* Nếu (a + c, b + c) = 1
Từ (1) ⇒ (2c)2 = (a + c)(b + c)
Đặt a + c = m2 và b + c = n2 (m, n ∈ ℕ)
⇒ m2 – n2 = (m – n)(m + n) = a – b là số nguyên tố.
Mà m – n < m + n ⇒ m – n = 1 và m + n = a – b
Khi đó 8c + 1 = 4m(m – 1) + 1 = (2m – 1)2 là số chính phương.
Vậy 8c + 1 là số chính phương.