Cho ΔABC vuông tại A, AB = 6 cm, AC = 8 cm. Gọi V1 là thể tích khối nón tạo thành
Câu hỏi:
Cho ΔABC vuông tại A, AB = 6 cm, AC = 8 cm. Gọi V1 là thể tích khối nón tạo thành khi quay ΔABC quanh cạnh AB và V2 là thể tích khối nón tạo thành khi quay ΔABC quanh cạnh AC. Tính tỉ số \[\frac{{{V_1}}}{{{V_2}}}\].
Trả lời:
Ta có:
• \[{V_1} = \frac{1}{3}.6.\pi {.8^2} = 128\pi \]
• \[{V_2} = \frac{1}{3}{.6^2}.\pi .8 = 96\pi \]
Vậy \[\frac{{{V_1}}}{{{V_2}}} = \frac{{128\pi }}{{96\pi }} = \frac{4}{3}\].
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm giá trị lớn nhất của hàm số y = x(2 − lnx) trên đoạn [2; 3] .
Xem lời giải »
Câu 2:
Tìm giá trị nhỏ nhất của hàm số trên đoạn \[\left[ {\frac{1}{e};\,\,e} \right]\].
Xem lời giải »
Câu 3:
Tìm số giao điểm của đồ thị hàm số y = x4 − 3x2 − 5 và trục hoành.
Xem lời giải »
Câu 4:
Tìm giao điểm của đồ thị hàm số y = 2x + 1 (d) và trục hoành.
Xem lời giải »
Câu 5:
Cho tam giác ABC, có bao nhiêu điểm M thỏa mãn: \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3?\]
Xem lời giải »
Câu 6:
Cho tích phân \[I = \mathop \smallint \limits_0^1 \frac{{{x^7}}}{{{{\left( {1 + {x^2}} \right)}^5}}}dx\], giả sử đặt t = 1 + x2. Tính tích phân I.
Xem lời giải »
Câu 7:
Cho \[\mathop \smallint \limits_0^1 \left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx = a\ln 2 + b\ln 3\]với a, b là các số nguyên. Chứng minh a + 2b = 0.
Xem lời giải »
Câu 8:
Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Chọn ngẫu nhiên một số \[\overline {abc} \] từ S. Tính xác suất để số được chọn thỏa mãn a ≤ b ≤ c.
Xem lời giải »