X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho biểu thức: A = căn bậc hai của ( x^2 - 3)^2 + 12x^2/x^2  + căn bậc hai của ( x + 2)^2 - 8x. a) Rút gọn A. b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.


Câu hỏi:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Trả lời:

Lời giải

a) ĐKXĐ: x ¹ 0

\[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \]

\[ = \sqrt {\frac{{{x^4} - 6{x^2} + 9 + 12{x^2}}}{{{x^2}}}} + \sqrt {{x^2} + 4x + 4 - 8x} \]

\[ = \sqrt {\frac{{{x^4} + 6{x^2} + 9}}{{{x^2}}}} + \sqrt {{x^2} - 4x + 4} \]

\[ = \sqrt {\frac{{{{\left( {{x^2} + 3} \right)}^2}}}{{{x^2}}}} + \sqrt {{{\left( {x - 2} \right)}^2}} \]

\[ = \left| {\frac{{{x^2} + 3}}{x}} \right| + \left| {x - 2} \right|\]

\[ = \left| {x + \frac{3}{x}} \right| + \left| {x - 2} \right|\]

b) Để A Î ℤ thì \[\left| {x + \frac{3}{x}} \right| + \left| {x - 2} \right| \in \mathbb{Z} \Leftrightarrow \frac{3}{x} \in \mathbb{Z}\]

Þ x Î Ư(3) = 1; ± 3}.

Vậy x Î {±1; ±3} thì A đạt giá trị nguyên.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 4:

Chứng minh: \(\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} ,\;\forall a,\;b,\;c,\;d \in \mathbb{R}\).

Xem lời giải »


Câu 5:

Cho tập A = {0; 1; 2; 3; 4; 5}, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó nhất thiết phải có chữ số 0 và 3.

Xem lời giải »


Câu 6:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem lời giải »