X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tập A = {0; 1; 2; 3; 4; 5}, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó nhất thiết phải có chữ số 0 và 3.


Câu hỏi:

Cho tập A = {0; 1; 2; 3; 4; 5}, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó nhất thiết phải có chữ số 0 và 3.

Trả lời:

Lời giải

Số tự nhiên thỏa mãn có dạng \[\overline {abcd} \] với a, b, c, d Î A và đôi một khác nhau.

• TH1: d = 0

Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có: 

5 . 4 . 3 = 60 (số).

• TH2: d ¹ 0

d có 2 cách chọn là 2, 4

Khi đó có 4 cách chọn a (vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.

Theo quy tắc nhân có: 2 . 4 . 4 . 3 = 96 (số).

Vậy có tất cả: 96 + 60 = 156 (số).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem lời giải »


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 5:

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có năm chữ số khác nhau và nhất thiết phải có chữ số 1 và 5?

Xem lời giải »


Câu 6:

Cho một cấp số cộng (un) có u1 = 5 và tổng 50 số hạng đầu bằng 5150. Tìm công thức của số hạng tổng quát un.

Xem lời giải »


Câu 7:

Cho dãy số (un) là một cấp số cộng, biết u2 + u21 = 50. Tính tổng của 22 số hạng đầu của dãy.

Xem lời giải »


Câu 8:

Tìm số mặt cầu chứa một đường tròn cho trước.

Xem lời giải »