Cho đa giác đều (H) có 20 cạnh. Xét tam giác có 3 đỉnh được lấy từ các đỉnh của (H).
Câu hỏi:
Cho đa giác đều (H) có 20 cạnh. Xét tam giác có 3 đỉnh được lấy từ các đỉnh của (H). Hỏi có bao nhiêu tam giác có đúng 1 cạnh là cạnh của (H).
Trả lời:
Chọn một cạnh của đa giác (H) làm cạnh của tam giác nên có 20 cách
Chọn một đỉnh (để ghép với cạnh đã chọn ở bước trên tạo thành tam giác thỏa mãn bài toán) nên có 16 cách chọn (bỏ 2 đỉnh thuộc cạnh đã chọn và 2 đỉnh liền kề hai bên cạnh đã chọn).
Vậy số tam giác cần tìm là 20 . 16 = 320.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hình thoi ABCD có cạnh bằng a và = 60°. Độ dài của vectơ ?
Xem lời giải »
Câu 2:
Cho tam giác ABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của NC lấy điểm K sao cho NK = NC.
a) Chứng minh ∆ABM = ∆CMA.
b) Chứng minh AK = 2MC.
c) Tính .
Xem lời giải »
Câu 3:
Cho tam giác ABC có AB = c, BC = a, AC = b thỏa mãn: b2 + c2 – a2 = . Tính số đo .
Xem lời giải »
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,6 cm HC = 6,4 cm.
a) Tính AB, AC, AH.
b) Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh AB.AE = AC.AF.
Xem lời giải »
Câu 5:
Cho tam giác đều ngoại tiếp đường tròn bán kính 2 cm. Khi đó cạnh của tam giác đều có độ dài bằng bao nhiêu?
Xem lời giải »
Câu 6:
Với A, B, C là 3 góc trong 1 tam giác, chứng minh sin A + sin B + sin C = .
Xem lời giải »
Câu 8:
Cho cấp số cộng (un) thỏa mãn u2 – u3 + u5 = 10 và u1 + u6 = 17. Tìm u1 và công sai của cấp số cộng sao cho.
Xem lời giải »