X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm c


Câu hỏi:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

A. Bốn điểm A, B, O, C cùng thuộc một đường tròn đường kính AC;
B. BC là đường trung trực của OA;
C. Cả A và B đều đúng;
D. Cả A và B đều sai.

Trả lời:

Lời giải

Đáp án đúng là: D

Media VietJack

Ta có AB, AC là hai tiếp tuyến của (O) nên \(\widehat {ABO} = \widehat {AC{\rm{O}}} = 90^\circ \)

Suy ra B, C cùng thuộc đường tròn đường kính OA

Nên A, B, O, C cùng thuộc một đường tròn đường kính OA. Do đó A sai.

Ta có AB, AC là hai tiếp tuyến của (O) cắt nhau tại A

Nên AB = AC và AO là phân giác của \(\widehat {BAC}\) (tính chất 2 tiếp tuyến cắt nhau)

Suy ra ∆ ABC là tam giác cân tại A

Do đó AO vừa là phân giác của \(\widehat {BAC}\) vừa là đường trung trực của BC (tính chất tam giác cân) nên B sai

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem lời giải »


Câu 2:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem lời giải »


Câu 5:

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần

Xem lời giải »


Câu 6:

Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ

Xem lời giải »


Câu 7:

Diện tích hình tam giác là 25,3 cm2, chiều cao là 5,5 cm. Tính độ dài đáy của hình tam giác đó.

Xem lời giải »


Câu 8:

Tìm số có 3 chữ số abc sao cho \(\frac{{abc}}{{a + b + c}}\) lớn nhất.

Xem lời giải »