Tìm số có 3 chữ số abc sao cho abc/a + b + c lớn nhất.
Câu hỏi:
Trả lời:
Lời giải
Để \(\frac{{abc}}{{a + b + c}}\) lớn nhất thì abc lớn nhất và a + b + c nhỏ nhất
Vì a + b + c nhỏ nhất nên a + b + c = 3
Suy ra abc = 111
Vậy số cần tìm là 111.
Câu hỏi:
Trả lời:
Lời giải
Để \(\frac{{abc}}{{a + b + c}}\) lớn nhất thì abc lớn nhất và a + b + c nhỏ nhất
Vì a + b + c nhỏ nhất nên a + b + c = 3
Suy ra abc = 111
Vậy số cần tìm là 111.
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Câu 6:
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2cm và OA = 4cm.
Câu 8:
Cho 3 đường thẳng: d1: y= mx – m + 1; d2: y = 2x + 3; d3: y = x + 1.
a) Chứng minh rằng khi m thay đổi, đường thẳng d1 luôn đi qua 1 điểm cố định.
b) Tìm m để 3 đường thẳng trên đồng quy. Tính tọa độ điểm giao nhau đó.