X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số f (x) có đạo hàm liên tục trên R. Đồ thị hàm số y =f'(x) như hình


Câu hỏi:

Cho hàm số f (x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên. Hàm số y=fx2+4xx24x có bao nhiêu điểm cực trị thuộc khoảng 5;1

A. 5

B. 4

C. 6

D. 3

Trả lời:

Đáp án A

Ta có:

y'=2x+4f'x2+4x2x4=2x+4f'x2+4x1y'=02x+4=0f'x2+4x1=02x+4=0f'x2+4x=12x+4=0x2+4x=4x2+4x=0x2+4x=t1;5x=25;1x=05;1x=45;1x=2±4+t

Xét x1=24+t, với 1<t<55<24+t<25<15<x1<1

Xét x2=2+4+t, với 1<t<55<2+4+t<2+5<15<x2<1

Do đó phương trình y’ = 0 có 5 nghiệm phân biệt thuộc (-5; 1) và các nghiệm này đều là nghiệm bội lẻ nên đạo hàm y’ đổi dấu qua chúng.

Vậy hàm số có 5 điểm cực trị trong khoảng (-5; 1)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hai hàm số bậc bốn y=fx và y=g(x) có các đồ thị như hình dưới đây (2 đồ thị có đúng 3 điểm chung)

Số điểm cực trị của hàm số hx=f2x+g2x2fx.g(x) là:

Xem lời giải »


Câu 2:

Cho hàm số y=f(x) có đạo hàm f'(x) có đồ thị như hình dưới đây

Số điểm cực trị của hàm số g(x)=8fx33x+32x612x4+16x3+18x248x+1 là:

Xem lời giải »


Câu 3:

Cho hàm số y=f(x)=ax4+bx2+c biết a>0,c>2017 và a+b+c<2017. Số điểm cực trị của hàm số y=fx2017 là:

Xem lời giải »


Câu 4:

Cho hàm số f (x) có đạo hàm f'x=xx1x+23;xR. Số điểm cực trị của hàm số đã cho là:

Xem lời giải »