X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới


Câu hỏi:

Cho hai hàm số bậc bốn y=fx và y=g(x) có các đồ thị như hình dưới đây (2 đồ thị có đúng 3 điểm chung)

Số điểm cực trị của hàm số hx=f2x+g2x2fx.g(x) là:

A. 5

B. 4

C. 6

D. 3

Trả lời:

Đáp án A

Ta có:

hx=fxgx2h'x=2fxgx.fxgx'=2fxgx.f'xg'x

Cho h'x=0fxgx=0(1)f'xg'x=0(2)

Từ đồ thị hàm số ta thấy phương trình (1) có 3 nghiệm phân biệt x=1x=x1x=31;3 và đa thức fxgx đổi dấu khi qua các nghiệm này. Do đó các nghiệm trên là các nghiệm bội lẻ của (1). Mà f (x) và g (x) đều là các đa thức bậc 4 nên bậc của phương trình (1) nhỏ hơn hoặc bằng 4. Từ đó suy ra phương trình (1) là phương trình bậc 3.

Do đó phương trình (1) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (2) có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (1)

Suy ra phương trình h'(x)=0 có 5 nghiệm phân biệt và  đổi dấu qua các nghiệm này nên hàm số h (x) có 5 điểm cực trị.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f (x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên. Hàm số y=fx2+4xx24x có bao nhiêu điểm cực trị thuộc khoảng 5;1

Xem lời giải »


Câu 2:

Cho hàm số y=f(x) có đạo hàm f'(x) có đồ thị như hình dưới đây

Số điểm cực trị của hàm số g(x)=8fx33x+32x612x4+16x3+18x248x+1 là:

Xem lời giải »


Câu 3:

Cho hàm số y=f(x)=ax4+bx2+c biết a>0,c>2017 và a+b+c<2017. Số điểm cực trị của hàm số y=fx2017 là:

Xem lời giải »


Câu 4:

Cho hàm số f (x) có đạo hàm f'x=xx1x+23;xR. Số điểm cực trị của hàm số đã cho là:

Xem lời giải »


Câu 5:

Cho hàm số f (x) có đạo hàm f'x=x2+xx222x4,xR. Số điểm cực trị của f (x) là:

Xem lời giải »