X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).


Câu hỏi:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Trả lời:

Lời giải

Xét phương trình f(x) = 0 mx + m – 1 = 0.

Trường hợp 1: m = 0.

Khi đó phương trình f(x) = 0 0.x = 1 (vô nghiệm).

Vì vậy ta loại m = 0.

Trường hợp 2: m ≠ 0.

Phương trình \(f\left( x \right) = 0 \Leftrightarrow x = \frac{{1 - m}}{m}\).

Phương trình f(x) = 0 có nghiệm thuộc (3; 4).

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{1 - m}}{m} > 3\\\frac{{1 - m}}{m} < 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{1 - 4m}}{m} > 0\\\frac{{1 - 5m}}{m} < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 < m < \frac{1}{4}\\\left[ \begin{array}{l}m < 0\\m > \frac{1}{5}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \frac{1}{5} < m < \frac{1}{4}\).

So với điều kiện m ≠ 0, ta nhận \(\frac{1}{5} < m < \frac{1}{4}\).

Vậy \(\frac{1}{5} < m < \frac{1}{4}\) thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem lời giải »


Câu 2:

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.

Xem lời giải »


Câu 3:

Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?

Xem lời giải »


Câu 4:

Cho a, b > 0 và a + b = 1. Chứng minh rằng \(\frac{1}{{{a^2} + {b^2}}} \ge 2\).

Xem lời giải »