Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?
Câu hỏi:
Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?
Trả lời:
Lời giải
Do hạ giá 10% nên giá bán mới bằng 90% giá bình thường.
Coi giá vốn là 100% thì giá bán mới bằng 108% giá vốn.
Như vậy \(\frac{{108}}{{100}}\) (giá vốn) = \(\frac{{90}}{{100}}\) (giá bình thường).
Giá bình thường so với giá vốn là:
\(\frac{{108}}{{100}}:\frac{{90}}{{100}} = \frac{6}{5} = 120\% \).
Nếu không giảm giá thị cửa hàng lãi là:
120% – 100% = 20%.
Đáp số: 20%.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).
Xem lời giải »
Câu 2:
Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.
Xem lời giải »
Câu 3:
Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.
Xem lời giải »
Câu 4:
Cho a, b > 0 và a + b = 1. Chứng minh rằng \(\frac{1}{{{a^2} + {b^2}}} \ge 2\).
Xem lời giải »
Câu 5:
Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, \(AC = a\sqrt 3 \). Hình chiếu vuông góc của A’ lên (ABC) trùng với trung điểm I của BC. Tính khoảng cách giữa BB’ và AC’.
Xem lời giải »
Câu 6:
Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow {AM} .\overrightarrow {BN} \).
Xem lời giải »
Câu 7:
Cho tam giác ABC vuông tại A, biết \(\overrightarrow {AB} .\overrightarrow {CB} = 4\), \(\overrightarrow {AC} .\overrightarrow {BC} = 9\). Tìm AB, AC, BC.
Xem lời giải »