X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, góc D = 60^0. Tính diện tích hình bình hành ABCD.


Câu hỏi:

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.

Trả lời:

Lời giải

Media VietJack

Tam giác ACD vuông tại A: \(CD = \frac{{AD}}{{\cos \widehat {ADC}}} = \frac{{3,5}}{{\cos 60^\circ }} = 7\) (cm).

Kẻ AH CD tại H.

Tam giác ADH vuông tại H: \[AH = AD.\sin \widehat {ADH} = 3,5.\sin 60^\circ = \frac{{7\sqrt 3 }}{4}\] (cm).

Diện tích hình bình hành ABCD là: \(S = AH.CD = \frac{{7\sqrt 3 }}{4}.7 = \frac{{49\sqrt 3 }}{4}\) (cm2).

Vậy diện tích hình bình hành ABCD bằng \(\frac{{49\sqrt 3 }}{4}\) cm2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Xem lời giải »


Câu 2:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem lời giải »


Câu 3:

Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?

Xem lời giải »


Câu 4:

Cho a, b > 0 và a + b = 1. Chứng minh rằng \(\frac{1}{{{a^2} + {b^2}}} \ge 2\).

Xem lời giải »


Câu 5:

Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, \(AC = a\sqrt 3 \). Hình chiếu vuông góc của A’ lên (ABC) trùng với trung điểm I của BC. Tính khoảng cách giữa BB’ và AC’.

Xem lời giải »


Câu 6:

Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow {AM} .\overrightarrow {BN} \).

Xem lời giải »