X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = x căn bậc hai (4 - x^2). Gọi M, m lần lượt là GTLN, GTNN


Câu hỏi:

Cho hàm số \(y = x\sqrt {4 - {x^2}} .\) Gọi M, m lần lượt là GTLN, GTNN của hàm số. Tính M + m.

Trả lời:

TXĐ: D = [-2; 2].

Ta có: \(y' = 1.\sqrt {4 - {x^2}} + x.\frac{{ - 2x}}{{2\sqrt {4 - {x^2}} }} = \sqrt {4 - {x^2}} - \frac{{{x^2}}}{{\sqrt {4 - {x^2}} }} = \frac{{4 - {x^2} - {x^2}}}{{\sqrt {4 - {x^2}} }} = \frac{{4 - 2{x^2}}}{{\sqrt {4 - {x^2}} }}.\)

\(y' = 0\) 4 – 2x2 = 0 \(x = \pm \sqrt 2 \in \left[ { - 2;2} \right].\)

y(-2) = 0; y(2) = 0; \(y\left( {\sqrt 2 } \right) = 2;\,\,y\left( { - \sqrt 2 } \right) = - 2.\)

Vậy min y = -2 = m \(x = - \sqrt 2 ,\) max y = 2 = M \(x = \sqrt 2 .\)

\(M + m = \sqrt 2 + \left( { - \sqrt 2 } \right) = 0.\)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \(\widehat {BAD} = 60^\circ .\) Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem lời giải »


Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, \(\widehat {BAD} = 60^\circ ,\) \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}.\) Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đấy đúng?

Xem lời giải »


Câu 3:

Một chi đoàn có 16 đoàn viên. Cần bầu chọn một Ban chấp hành ba người gồm Bí thư, Phó Bí thư và Ủy viên. Số cách chọn ra Ban chấp hành nói trên là:

Xem lời giải »


Câu 4:

Cho hàm số \(y = {x^3} - 3mx + 1.\) Tìm m để đồ thị hàm số có hai điểm cực trị B và C sao cho tam giác ABC cân tại A, với A(2, 3).

Xem lời giải »


Câu 5:

Hỏi có bao nhiêu giá trị m nguyên trong [-2017; 2017] để phương trình log(mx) = 2.log(x + 1) có nghiệm duy nhất?

Xem lời giải »


Câu 6:

Biết phương trình \(\log _2^2x - 2{\log _2}\left( {2x} \right) - 1 = 0\) có hai nghiệm x1, x2. Tính x1x2.

Xem lời giải »


Câu 7:

Một tam giác ABC có số đo góc đỉnh A là \(60^\circ .\) Biết số đo góc B là một nghiệm của phương trình \({\sin ^2}4x + 2\sin 4x.\cos 4x - {\cos ^2}4x = 0.\) Tìm số tam giác thỏa mãn yêu cầu bài toán.

Xem lời giải »


Câu 8:

Một vận động viên bắn súng, bắn ba viên đạn. Xác suất để trúng cả ba viên vòng 10 là 0,0008; xác suất đề một viên trúng vòng 8 là 0,15; xác suất để một viên trúng vòng dưới 8 là 0,4. Biết rằng các lần bắn là độc lập với nhau. Xác suất để vận động viên đó đạt ít nhất 28 điểm có giá trị gần bằng nhất với số nào sau đây?

Xem lời giải »