Cho hình bình hành ABCD. a) Chứng minh 2(AB2 + BC2) = AC2 + BD2.
Câu hỏi:
Cho hình bình hành ABCD.
a) Chứng minh 2(AB2 + BC2) = AC2 + BD2.
Trả lời:
a) Do ABCD là hình bình hành nên BC = AD; AB = DC.
Và AB//CD nên
Áp dụng định lí côsin cho hai tam giác ABD và ADC ta có:
BD2 = AD2 + AB2 – 2.AD.AB.cosA = BC2 + AB2 – 2.BC.AB.cosA
AC2 = AD2 + DC2 – 2.AD.DC.cosD = BC2 + AB2 + 2.BC.AB.cosA
Khi đó : BD2 + AC2 = 2AB2 + 2BC2 = 2(AB2 + BC2).
Vậy 2(AB2 + BC2) = AC2 + BD2.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Xem lời giải »
Câu 2:
b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.
Xem lời giải »
Câu 3:
Cho ∆ABC vuông tại A, có . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính .
Xem lời giải »
Câu 4:
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
Xem lời giải »
Câu 6:
Giải phương trình:
(12x + 7)2(3x + 2)(2x + 1) = 3
Xem lời giải »
Câu 8:
Cho hàm số y = f(x) liên tục trên R. Biết rằng hàm số y = f '(x) có đồ thị như hình vẽ. Hàm số y = f(x2 – 5) nghịch biến trên khoảng nào sau đây?
Xem lời giải »