Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng A B C D trùng với trọng tâm G của tam giác ABD. Đường thẳng SD tạo với mặt phẳng một góc 60°. Tính khoảng cách giữa hai đường thẳng AB và SC.
Trả lời:
Gọi O là tâm của hình vuông và N là trung điểm của AB.
Khi đó G là giao điểm của AC và DN.
Tam giác SGD vuông tại G nên nhọn.
Do SG ^ (ABCD) nên
Tam giác NAD vuông tại A nên .
Suy ra
Do đó
Ta có CD // AB mà CD Ì (SCD) nên AB // (SCD).
Ta có:
Suy ra
Từ G kẻ đường thẳng song song với AD, cắt CD tại M thì CD ^ (SGM)
Suy ra (SCD) ^ (SGM).
Hai mặt phẳng (SCD) và (SGM) cắt nhau theo giao tuyến SM.
Từ G kẻ GH ^ SM, H Î SM thì GH ^ (SCD).
Do đó d(G; (SCD)) = GH
Ta có: và tam giác SGM vuông tại G có đường cao GH nên
.
Vậy .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Đa thức P (x) = 32x5 − 80x4 + 80x3 − 40x2 + 10x − 1 là khai triển của nhị thức nào dưới đây?
Xem lời giải »
Câu 2:
Cho đoạn thẳng AB. Vị trí của điểm M thỏa mãn: được xác định bởi:
Xem lời giải »
Câu 3:
Cho hai điểm A, B phân biệt. Xác định điểm M biết .
Xem lời giải »
Câu 4:
Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng: .
Xem lời giải »
Câu 5:
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và . Tính thể tích V của khối chóp S.ABCD.
Xem lời giải »
Câu 6:
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA ^ (ABCD) và . Tính thể tích của khối chóp S.ABCD.
Xem lời giải »
Câu 7:
Hình trụ có bán kính đáy bằng a và thiết diện qua trục là một hình vuông. Tính thể tích khối trụ đó.
Xem lời giải »
Câu 8:
Một hình trụ có bán kính đáy a, có thiết diện qua trục là một hình vuông. Tính theo a diện tích xung quanh của hình trụ.
Xem lời giải »