X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình lăng trụ ABC.A'B'C có đáy là tam giác đều cạnh a. Mặt bên BB'C'C' là hình thoi


Câu hỏi:

Cho hình lăng trụ ABC.A'B'C có đáy là tam giác đều cạnh a. Mặt bên BB'C'C' là hình thoi và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa CC' và mặt phẳng (ABB'A) bằng \[\frac{{a\sqrt {12} }}{5}.\] Thể tích khối lăng trụ ABC.A'B'C bằng:

A. \(\frac{{{a^3}}}{6}.\)

B. \(\frac{{{a^3}\sqrt {21} }}{{14}}.\)

C. \(\frac{{3{a^3}}}{8}.\)

D. \(\frac{{{a^3}\sqrt {21} }}{7}.\)

Trả lời:

Đáp án đúng là: B

Cho hình lăng trụ ABC.A'B'C có đáy là tam giác đều cạnh a. Mặt bên BB'C'C' là hình thoi  (ảnh 1)

Kẻ B’H Bc (H BC).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {BCC'B'} \right) \bot \left( {ABC} \right) = BC}\\{B'H \subset \left( {BCC'B'} \right);B'H \bot BC}\end{array} \Rightarrow B'H \bot \left( {ABC} \right)} \right.\).

Đặt \(B'H = x(x > 0)\)

\( \Rightarrow BH = \sqrt {{a^2} - {x^2}} \) (Định lí Pytago trong tam giác vuông BB’H ).

Gọi M là trung điềm của AB ta có CM AB và \(CM = \frac{{a\sqrt 3 }}{2}\) (do ∆ABC đều ạnh \({\rm{a}}\) ).

Trong (ABC) kẻ HK // CM (K AB), áp dụng định lí Ta−lét ta có:

\(\frac{{HK}}{{CM}} = \frac{{BH}}{{BC}} \Rightarrow \frac{{HK}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{\sqrt {{a^2} - {x^2}} }}{a} \Rightarrow HK = \frac{{\sqrt 3 \sqrt {{a^2} - {x^2}} }}{2}.\)

Áp dụng định lí Pytago trong tam giác vuông B’HK ta có:

\(B'{K^2} = B'{H^2} + H{K^2} = {x^2} + \frac{3}{4}\left( {{a^2} - {x^2}} \right) = \frac{3}{4}{a^2} + \frac{1}{4}{x^2} \Rightarrow B'K = \frac{{\sqrt {3{a^2} + {x^2}} }}{2}\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot B'H}\\{AB \bot HK\left( {HK\,{\rm{//}}\,CM} \right)}\end{array} \Rightarrow AB \bot \left( {B'HK} \right) \Rightarrow AB \bot B'K} \right.\).

Khi đó ta có: \({S_{ABB'A'}} = B'K.AB = \frac{{a\sqrt {3{a^2} + {x^2}} }}{2}\)

Ta có: \(CC'\,{\rm{//}}\,BB' \Rightarrow CC'\,{\rm{//}}\,\left( {ABB'A'} \right)\)

\( \Rightarrow d\left( {CC';\left( {ABB'A'} \right)} \right) = d\left( {C;\left( {ABB'A'} \right)} \right) = \frac{{a\sqrt {12} }}{5}\).

\( \Rightarrow {V_{C \cdot ABB'A'}} = \frac{1}{3}{S_{ABB'A'}} \cdot d\left( {C;\left( {ABB'A'} \right)} \right)\)

\( = \frac{1}{3} \cdot \frac{{a\sqrt {3{a^2} + {x^2}} }}{2} \cdot \frac{{a\sqrt {12} }}{5}\)

\( = \frac{{{a^2}\sqrt {12} \sqrt {3{a^2} + {x^2}} }}{{30}} = \frac{2}{3}{V_{ABC \cdot A'B'C'}}\)

\( \Rightarrow {V_{ABC \cdot A'B'C'}} = \frac{3}{2} \cdot \frac{{{a^2}\sqrt {12} \sqrt {3{a^2} + {x^2}} }}{{30}} = \frac{{{a^2}\sqrt {12} \sqrt {3{a^2} + {x^2}} }}{{20}}\)

Lại có: \({V_{ABC \cdot A'B'C'}} = B'H \cdot {S_{\Delta ABC}} = x \cdot \frac{{{a^2}\sqrt 3 }}{4}\)

\( \Rightarrow \frac{{{a^2}\sqrt {12} \sqrt {3{a^2} + {x^2}} }}{{20}} = x \cdot \frac{{{a^2}\sqrt 3 }}{4}\)

\( \Leftrightarrow \frac{{2\sqrt {3{a^2} + {x^2}} }}{5} = x \Leftrightarrow 4\left( {3{a^2} + {x^2}} \right) = 25{x^2}\)

\( \Leftrightarrow 21{x^2} = 12{a^2} \Leftrightarrow x = \frac{{2\sqrt 7 }}{7}a\)

Vậy \({V_{ABC \cdot A'B'C'}} = x \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{2\sqrt 7 }}{7} \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{\sqrt {21} {a^3}}}{{14}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hai tập hợp X = {1; 2; 3; 4}; Y = {1;2}. Tập hợp CXY là tập hợp nào sau đây?

Xem lời giải »


Câu 2:

Nghiệm của phương trình cos x + sin x = 0 là:

Xem lời giải »


Câu 3:

Giá trị của biểu thức A=tan1°tan2°tan3°...tan88°tan89° là:

Xem lời giải »


Câu 4:

Giá trị của tan 45° + cot 135° bằng bao nhiêu?

Xem lời giải »


Câu 5:

Điều kiện để hàm số bậc ba không có cực trị là phương trình y’ = 0 có:

Xem lời giải »


Câu 6:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên hợp với đáy một góc 60°. Thể tích khối chóp S.ABC là:

Xem lời giải »


Câu 7:

Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 60°. Tính thể tích của khối chóp S.ABCD ?

Xem lời giải »


Câu 8:

Cho hai đồ thị hàm số y = x3 + 2x2 ‒ x + 1 và đồ thị hàm số y = x2 ‒ x + 3 có tất cả bao nhiêu điểm chung?

Xem lời giải »