Cho hình phẳng (H) giới hạn bởi đường parabol (P): y = x2 − x + 2 và tiếp tuyến của đồ thị hàm số y = x2 + 1 tại điểm có tọa độ (1; 2). Tính diện tích của hình (H).
Câu hỏi:
Cho hình phẳng (H) giới hạn bởi đường parabol (P): y = x2 − x + 2 và tiếp tuyến của đồ thị hàm số y = x2 + 1 tại điểm có tọa độ (1; 2). Tính diện tích của hình (H).
Trả lời:
Đặt y = f(x) = x2 + 1
Ta có: f ′(x) = 2x
Phương trình tiếp tuyến (d) của parabol (P): y = x2 + 1 tại điểm có tọa độ (1; 2) có dạng:
y = f ′(1) (x−1) + 2 = 2(x − 1) + 2 hay y = 2x
Phương trình hoành độ giao điểm của (d) và (P):
Diện tích của hình (H) là:
Vậy diện tích của hình (H) là .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm giao điểm 2 đường tròn (C1): x2 + y2 – 4 = 0 và (C2): x2 + y2 – 4x – 4y + 4 = 0.
Xem lời giải »
Câu 3:
Câu nào trong các câu sau không phải là mệnh đề?
Xem lời giải »
Câu 4:
Cho hình thang ABCD vuông góc tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C’, D’ lần lượt là hình chiếu vuông góc của A trên SC và SD. Chứng minh rằng .
Xem lời giải »
Câu 5:
Tích diện tích hình phẳng giới hạn bởi x = −1; x = 2; y = 0; y = x2 − 2x.
Xem lời giải »
Câu 6:
Tìm số nghiệm của phương trình 2x + 3x + 4x +...+ 2017x + 2018x = 2017 – x.
Xem lời giải »