X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình thang cân ABCD (AB//CD) điểm E là trung điểm của AB. Gọi I, K, M lần lượt


Câu hỏi:

Cho hình thang cân ABCD (AB//CD) điểm E là trung điểm của AB. Gọi I, K, M lần lượt là trung điểm của BC, CD, DA.

a) Tứ giác EIKM là hình gì?

b) Tìm điều kiện của hình thang ABCD để EIKM là hình vuông.

Trả lời:

Cho hình thang cân ABCD (AB//CD) điểm E là trung điểm của AB. Gọi I, K, M lần lượt  (ảnh 1)

a) Xét tam giác ABC có E; I lần lượt là trung điểm của AB và BC.

Suy ra ta có EI là đường trung bình của tam giác ABC.

Do đó EI // AC, EI = \(\frac{1}{2}AC\) (1)

Chứng minh tương tự ta có: MK // AC, MK = \(\frac{1}{2}AC\)(2)

ME // BD, ME = \(\frac{1}{2}BD\) (3)

Mặt khác AC = BD (do tứ giác ABCD là hình thang cân) (4)

Từ (3) và (4) suy ra ME = MK (5)

Từ (1); (2); (5) suy ra tứ giác EIKM là hình thoi.

b) Để tứ giác EIMK là hình vuông thì EM  EI.

Mà theo câu a) ta có: EI // AC; EM // BD.

Khi đó suy ra để tứ giác EIMK là hình vuông thì AC  BD.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).

Xem lời giải »


Câu 2:

Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.

Xem lời giải »


Câu 3:

Tìm x biết: (4x – 3)2 – 3x(3 – 4x) = 0.

Xem lời giải »


Câu 4:

Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).

Xem lời giải »


Câu 5:

Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B(0; b). Hãy viết phương trình đường thẳng (d) sao cho SOAB = 2.

Xem lời giải »


Câu 6:

Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm)

a) Chứng minh OC BD.

b) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.

c) Chứng minh \(\widehat {CMD} = \widehat {CDA}\).

d) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.

Xem lời giải »